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Marginal effect estimates in genome-wide association studies
(GWAS) are mixtures of direct and indirect genetic effects. Existing
methods to dissect these effects require family-based, individual-
level genetic, and phenotypic data with large samples, which is
difficult to obtain in practice. Here, we propose a statistical frame-
work to estimate direct and indirect genetic effects using summary
statistics from GWAS conducted on own and offspring pheno-
types. Applied to birth weight, our method showed nearly identi-
cal results with those obtained using individual-level data. We also
decomposed direct and indirect genetic effects of educational at-
tainment (EA), which showed distinct patterns of genetic correla-
tions with 45 complex traits. The known genetic correlations
between EA and higher height, lower body mass index, less-
active smoking behavior, and better health outcomes were
mostly explained by the indirect genetic component of EA. In
contrast, the consistently identified genetic correlation of autism
spectrum disorder (ASD) with higher EA resides in the direct ge-
netic component. A polygenic transmission disequilibrium test
showed a significant overtransmission of the direct component
of EA from healthy parents to ASD probands. Taken together, we
demonstrate that traditional GWAS approaches, in conjunction
with offspring phenotypic data collection in existing cohorts,
could greatly benefit studies on genetic nurture and shed impor-
tant light on the interpretation of genetic associations for human
complex traits.

genetic nurture | indirect genetic effect | family-based study | GWAS |
summary statistics

Genome-wide association studies (GWAS) have been a great
success in the past decade, identifying tens of thousands of

associations for numerous complex human traits (1). The stan-
dard GWAS approach estimates the marginal association be-
tween each single-nucleotide polymorphism (SNP) and a
phenotype while assuming that genetic and environmental fac-
tors additively affect the phenotype. Despite the simplicity, such
an analytical strategy is computationally efficient and statistically
robust. However, interpretation of GWAS associations remains a
challenge, in part because most identified associations have weak
effect sizes and are located in the noncoding regions of the ge-
nome (2, 3). Interpretation is especially challenging for behav-
ioral traits since the role of each variant or gene in complex
human behavior is difficult to disentangle. Nevertheless,
biobank-scale GWAS of complex traits have produced polygenic
scores (PGS) that aggregate the effects of many SNPs in the
genome to provide robust prediction of trait values (4). These
scores are widely used in social genomics research, although our
understanding of the underlying mechanism is superficial and
incomplete (5).
Recent evidence from family-based studies suggested that a

substantial fraction of genetic associations may be mediated by
the family environment (6–16). In particular, parental genotypes
could affect the family environment through the parents’

educational attainment (EA) (17), personalities (18, 19), be-
havior (20–24), and socioeconomic status (25), which could
subsequently affect the offspring’s phenotypes (26). As a result, a
person’s genotypes, which also reside in his or her biological
parents, could associate with the person’s phenotype both di-
rectly (through inherited genetic variants) and indirectly
(through parents and the family environment they create). Due
to the correlation between parental and offspring genotypes,
GWAS captures both the direct and indirect genetic effects in its
estimates, which further complicates the interpretation of
GWAS results (13). If the genetic nurture effect (i.e., parental
genotypes affecting offspring phenotype) is present for a given
trait, downstream analyses based on GWAS associations could
be biased and misleading (6, 8, 27).
It is thus crucial to decompose the direct and indirect genetic

effects and understand how they jointly affect the phenotype. By
leveraging large-scale trio cohorts and regressing the offspring
phenotype on two sets of PGS calculated using transmitted and
nontransmitted alleles in parents, Kong et al. (6) convincingly
demonstrated the existence of genetic nurture effects for
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multiple traits. In particular, PGS of nontransmitted alleles in
parents has an effect size that is about 30% of that by the
standard PGS for EA. Using PGS, several other studies (7–12)
also identified indirect genetic effects on various phenotypes.
Existing methods to detect direct and indirect genetic effects,
however, have limitations. First, they require individual-level
genotype and phenotype data of a large number of parents–
offspring trios or, in some cases, other types of rare samples [e.g.,
adopted individuals (11, 12)]. Although sample size in GWAS
has been steadily increasing, number of trio samples with ac-
cessible individual-level data remains moderate even in large
biobanks. Second, existing methods quantify genetic nurture
using PGS which relies on large GWAS conducted on samples
independent from the study. Even when such a GWAS exists, it
remains challenging to interrogate the direct and indirect ef-
fects of each SNP using designs and data similar to the current
GWAS practice, which is critical for functional follow-ups and
out-of-sample prediction (13).
Although a simple study design that regresses the phenotypes

on both own and parental genotypes should provide estimates
for direct and indirect genetic effects of each SNP, such a
strategy is most likely underpowered given the limited sample
size of trios in existing cohorts. Several recent studies have
attempted to solve this challenging problem. Warrington et al.
(28) used a structural equation model (SEM) approach to de-
compose direct genetic effects and indirect maternal effects on
birth weight while assuming paternal effects to be 0. This ap-
proach only requires summary statistics from a standard GWAS
on birth weight and a second GWAS based on maternal geno-
types and offspring phenotypes, thus effectively expanding the
available sample size. However, the SEM approach was too
computationally demanding to be applied to the genome-wide
scale, and a “weighted linear model” alternative could not ac-
count for sample overlap if individual-level data are unavailable.
Another recent approach (14, 15) expands family genotype data
by imputing the unobserved parental genotypes using data from
other family members. However, this approach still requires a
large sample of sibling or parent–offspring pairs. Further, when
parental genotypes are imputed from sibling pairs, it is chal-
lenging to distinguish paternal and maternal autosomal geno-
types. Thus, separate estimation of indirect maternal and
paternal effects is unattainable.
Here, we introduce DONUTS (decomposing nature and

nurture using GWAS summary statistics), a statistical framework
that can estimate direct and indirect genetic effects at the SNP
level. It requires GWAS summary statistics as input, allows dif-
ferential paternal and maternal effects, and accounts for GWAS
sample overlap and assortative mating. DONUTS has low
computational burden and can complete genome-wide analyses
within seconds. Applied to birth weight, our method showed
near-identical effect estimates compared to analyses (28) that
leveraged individual-level data and improved SE and statistical
power after accounting for sample overlap. We also applied our
method to dissect the direct and indirect genetic effects of EA.
Our results revealed distinct genetic correlations of the direct
and indirect genetic components of EA with various traits and
shed important light on the complex and heterogenous genetic
architecture of EA. Followed up in three independent cohorts of
autism spectrum disorder (ASD) proband–parent trios, we
identified significant overtransmission of the direct component
of EA from healthy parents to ASD probands but not to the
healthy siblings.

Results
Method Overview. The key idea of our statistical framework is
illustrated in Fig. 1. Derivations and statistical details are shown
in Methods and SI Appendix. If genetic data are available in a
number of parents–offspring trios, by regressing the offspring

phenotype values YO on the offspring, maternal, and paternal
genotypes (i.e., GO, GM, and GP) for a given SNP, the coeffi-
cients in the joint regression represent the direct genetic effect
βdir, indirect maternal effect βind mt, and paternal effect βind pt,
respectively. We could write the true genetic model as

YO = βdirGO + βind mtGM + βind ptGP + e, [1]

where e is the environmental noise. The total contribution of pa-
rental genotypes on offspring phenotype, (βind mtGM + βind ptGP),
can be further partitioned into the contribution of transmitted
alleles (βind mtTM + βind ptTP) and nontransmitted alleles
(βind mtNTM + βind ptNTP). In our framework, we define the indi-
rect genetic effect βind as the effect of a person’s genotype on the
phenotype via the indirect pathway that goes through biological
parents and the family environment. The component of paren-
tal indirect contribution that can be affected by GO is
(βind mtTM + βind ptTP). Regressing it on GO, we find that the in-
direct genetic effect βind = (βind mt + βind pt)=2. Unsurprisingly, the
indirect effect size is the average of the indirect maternal and
paternal effects since each parent contributes half of the off-
spring’s genotype. A key question we aim to investigate in this
paper is whether it is possible to estimate the direct and indirect
effect sizes (i.e., βdir, βind, βind mt, and βind pt) from marginal
GWAS association statistics via proper study designs.
Instead of focusing on a joint regression based on trio data, we

describe three separate GWASs. We refer to the marginal re-
gressions of own phenotype YO on own genotype GO as GWAS-
O. GWAS-M and GWAS-P denote the marginal analyses that
regress offspring phenotype on maternal genotype GM and pa-
ternal genotype GP, respectively. βO, βM, and βP denote the ex-
pectation of marginal effect estimates obtained from these three
analyses, respectively. It can be shown that βdir and βind of a given
SNP are linear combinations of βO, βM, and βP (Methods and SI
Appendix):

Fig. 1. Schematic diagram of direct and indirect genetic effects. GM , GP , GO

represents the maternal, paternal, and offspring genotypes, respectively.
α = Corr GM ,GP( ) is the correlation between spousal genotypes at a locus.
Effect size 0.5 is due to the fact that half of the parent’s genome is randomly
transmitted to the offspring GO. YO is the offspring’s phenotype. T and NT
represent transmitted and nontransmitted alleles from a parent to the off-
spring. In general, both offspring and parental genotypes could affect the
offspring’s phenotype with effect sizes of βdir , βind mt, and βind pt,
respectively.
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βdir = (2 + α)βO − βM − βP, [2]

βind = 2 + α

2 + 2α
[βM + βP − (1 + α)βO], [3]

where α = Corr GM ,GP( ) is the correlation between spousal gen-
otypes at the locus, which quantifies the degree of assortative
mating. Plugging in the ordinary least square estimates β̂O, β̂M,
and β̂P from the three marginal GWASs described above, we
obtain the unbiased estimates for the direct and indirect effects
of each SNP. Importantly, we do not require GO, GM , and GP to
be obtained from actual trios. In fact, samples in the three
GWAS could be independent or partially overlapped. From
the Eqs. 2 and 3, we also found that

βdir + (1 + α

2 + α
)βind = βO, [4]

which clearly shows that the effect size from a typical GWAS is
the combination of both direct and indirect effects and is also
affected by assortative mating (13).
Besides direct and indirect effects (i.e., βdir and βind), we could

also derive the expressions for indirect maternal and indirect
paternal effects (i.e., βind mt and βind pt), which makes it possible
to infer the parent-of-origin of genetic nurture. The results are
summarized in Table 1. Case i is the most general scenario, in
which we use summary statistics from GWAS-O, GWAS-M, and
GWAS-P to estimate βdir, βind, βind mt, and βind pt. Case ii illus-
trates that it is not always necessary to have separate paternal
and maternal GWASs. If paternal and maternal effects are
identical (βind mt = βint pt) or if there are equal numbers of
mothers and fathers (nM = nP) in a parental GWAS (referred to
as GWAS-MP in which fathers and mothers from different
families are pooled together in the GWAS), the corresponding
effect size βMP = (nMβM + nPβP)=(nM + nP) can be used to esti-
mate βdir and βind. Case iii illustrates a special case in which only
maternal genotype has an indirect effect while the indirect pa-
ternal effect is zero (SI Appendix, Fig. S1A). If we further assume
random mating (α = 0), then our model gives identical estimates
for direct effect, βdir, and maternal effect, βind mt,compared to
previous work on birth weight (28). The results for the case with
only indirect paternal effects are similar.
Calculations of the variances of estimated direct and indirect

effects are straightforward when the input GWASs are inde-
pendent. However, it is possible for a subset of individuals to be
involved in both the GWAS of their own phenotype and the
GWAS of their children’s phenotype (SI Appendix, Fig. S1B),
which causes technical correlations among β̂O, β̂M, and β̂P. We
show that the correlations can be estimated using the intercept
term from linkage disequilibrium score (LDSC) regression (29)

(SI Appendix), thereby correcting the sample overlap bias in SE
estimates.

Simulation Results. We performed extensive simulations to dem-
onstrate that our method provides unbiased estimates for direct
and indirect effects, shows well-controlled type-I error, and
properly accounts for sample overlap (Methods and SI Appendix,
Fig. S2). The results are summarized in Fig. 2 and SI Appendix,
Figs. S3–S5. Fig. 2 A and C describe results for case i in Table 1
in which three sets of GWAS summary statistics are used. The
estimates for direct, indirect, indirect maternal, and indirect
paternal effect sizes were all unbiased. When only GWAS-O and
GWAS-MP are available (case ii in Table 1), we could not dis-
tinguish indirect maternal and paternal effects but could still
estimate the indirect genetic effect (Fig. 2B). Here, despite the
difference between indirect maternal and paternal effect sizes,
estimation of the indirect genetic effects remained unbiased
when equal number of fathers and mothers were used in GWAS-
MP.
Sample overlap in input GWASs will not affect effect size

estimation. However, it will affect their SEs due to the intro-
duced correlations among β̂O, β̂M, and β̂P. In Fig. 2 C and F, there
were overlapping samples between GWAS-O and parental
GWAS. Since the phenotypic correlation among the overlapping
samples (i.e., correlation between parental and offspring phe-
notypes) would most likely be positive, the covariance between
effect size estimates is positive. As a result, correcting for sample
overlap reduces SE and increases power. Simulations under di-
verse settings all showed consistent results (SI Appendix, Figs.
S3–S5).

Direct and Maternal Effects on Birth Weight. To assess the perfor-
mance of our framework, we applied DONUTS to dissect the
direct genetic effect and indirect maternal genetic effect on birth
weight. Following a previous study by Warrington et al. (28), we
assumed random mating and absent indirect paternal effect on
offspring birth weight, which reduces the problem to a special
case in our framework (case iii in Table 1 and SI Appendix, Fig.
S1A). Using summary statistics from GWAS-O and GWAS-M
(n = 298,142 and 210,267, respectively; Methods), we estimated
the direct and indirect maternal effects of each SNP. Both esti-
mates were highly concordant with previous reports (Pearson
correlations = 0.976 and 0.982, respectively; SI Appendix, Fig.
S6). The genetic correlations among these effects were very close
to those reported in previous work (Datasets S1 and S2).
Of note, Warrington et al.’s results were based on a meta-

analysis of UK Biobank (UKB) (30) and many other smaller
cohorts. UKB was a main cohort used in both GWAS-O and
GWAS-M of birth weight, which caused a substantial sample
overlap. Warrington et al. (28) addressed sample overlap within
UKB by creating two linearly transformed, orthogonal pheno-
types for each individual who reported both her own birth weight

Table 1. Estimating direct and indirect genetic effects from multigenerational GWAS summary statistics

Input GWAS βdir βind ¼ ðβind mt þ βind ptÞ=2 βind mt and βind pt

(i) GWAS-O, GWAS-M, and GWAS-P ð2þ αÞβO � βM � βP
2þα
2þ2α ½βM þ βP � ð1þ αÞβO� βind mt ¼ 3�α2

2 1�α2ð ÞβM þ 1�2α�α2

2 1�α2ð Þ βP � 2þα
2 βO

βind pt ¼ 3�α2

2 1�α2ð ÞβP þ 1�2α�α2

2 1�α2ð Þ βM � 2þα
2 βO

(ii) GWAS-O and GWAS-MP (when parents contribute
equally βind mt ¼ βind pt or have equal sample size
nM ¼ nP in GWAS-MP)

ð2þ αÞβO � 2βMP
2þα
2þ2α ½2βMP � ð1þ αÞβO� βind mt ¼ βind pt ¼ βind (when

βind mt ¼ βind pt)

(iii) GWAS-O and GWAS-M (when only the maternal
effect contributes, [i.e., βind pt ¼ 0])

2
3�α2

½ð2þ αÞβO � ð1þ αÞβM� 2þα
3�α2

�
βM � 1þα

2 βO

�
βind mt ¼ 2þα

3�α2
½2βM � ð1þ αÞβO�

We illustrate the direct and indirect effect sizes under three different settings. Case i is the general case in which GWAS-O, GWAS-M, and GWAS-P are used
as input. In case ii, GWAS-O and GWAS-MP are used. This is valid only when βind mt ¼ βind pt or nM ¼ nP. If we only know nM ¼ nP, we cannot obtain separate
estimates for the indirect maternal and paternal effects. Case iii is when the indirect paternal effect size is 0. βO, βM , βP , and βMP are the expected effect sizes
in GWAS-O, GWAS-M, GWAS-P, and GWAS-MP, respectively. In all the cases, we always have βdir þ ½1þ α=ð2þ αÞ�βind ¼ βO and βind ¼ ðβind mt þ βind ptÞ=2.
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and her first child’s birth weight. GWAS were then performed on
the two phenotypes. This approach requires individual-level ge-
notype and phenotype data to identify the overlapping samples
and perform phenotype transformations, which is not easily ap-
plicable to other studies where only summary statistics are
available. In fact, their post hoc analysis (28) found that there
were about several thousand overlapping samples between UKB
and other cohorts used in the meta-analysis. These overlapping
samples were not accounted for in their analysis since it was
difficult to identify the exact samples that were shared across
cohorts. Therefore, compared with our results, the SEs given by
the paper showed a mild inflation (SI Appendix, Fig. S6).
To further demonstrate that our method could effectively

account for sample overlap, we conducted GWAS-O and
GWAS-M using 75,711 independent female samples of Euro-
pean ancestry in the UKB who reported birth weights of them-
selves and of their oldest child (Methods). Using these two sets of
summary statistics with a complete sample overlap, we estimated
the direct and indirect maternal effects of each SNP. For com-
parison (Fig. 3), we followed Warrington et al. (28) to run two
separate GWAS on the orthogonal phenotypes representing the
direct and maternal components of birth weight constructed
using individual-level data. Results from these two approaches
were nearly identical (Pearson correlation = 1.00 for both the
direct and indirect effect estimates). Not properly accounting for
sample overlap did not affect the effect size estimates but sub-
stantially inflated SEs which led to reduced statistical power
(Fig. 3). In addition, removing genetic principal components
(PCs) from the regression and performing GWAS using a linear
mixed model (Methods) both obtained highly consistent results
for direct and indirect maternal effects (Dataset S3 and SI Ap-
pendix, Figs. S7 and S8), showcasing robustness of these results
to population stratification.

Partitioning Direct and Indirect Genetic Effects on EA. Next, we
conducted a GWAS on offspring EA using a total of 15,277

individuals from the UKB, Wisconsin Longitudinal Study
(WLS), and Health and Retirement Study (HRS) while adjusting
for year of birth, sex, PCs, and cohort-specific covariates
(Methods). Due to the limited sample size, balanced sex ratio,
and previous reports on comparable maternal and paternal ef-
fects on EA (6), we pooled fathers and mothers together to
perform a parental GWAS (i.e., GWAS-MP). Combining results
in GWAS-MP with a meta-analyzed GWAS-O that does not
contain full sibling pairs in the UKB (n = 680,881), we estimated
the direct and indirect effects on EA. Further, we applied soft-
ware SNIPar (15) (https://github.com/AlexTISYoung/SNIPar) to
impute the parental genotypes of full sibling pairs in the UKB
and estimated direct and indirect effects with linear mixed
models (Methods). We meta-analyzed two sets of analyses to
obtain the final partitioned direct and indirect genetic effects on
EA (effective n = 24,434 and 37,081 for direct and indirect ef-
fects, respectively). The flowchart of the analysis is illustrated in
SI Appendix, Fig. S9. No loci reached genome-wide significance
at the current sample size (SI Appendix, Fig. S10). We assumed
random mating in the main analysis, but the results were highly
robust to assortative mating (SI Appendix, Fig. S11).
We estimated genetic correlations of the direct and indirect

EA effects with 45 other complex traits using LDSC (Fig. 4 and
Datasets S4–S7). As a comparison, an alternative approach
[i.e., software GNOVA (31)] also showed consistent results (SI
Appendix, Fig. S12 and Dataset S8). At a false discovery rate
cutoff of 0.05, we identified 18 significant genetic correlations, 4
of which were with the direct effect and 14 were with the indirect
effect, which highlighted the substantial contribution of genetic
nurture on the etiologic sharing among complex traits. We also
estimated genetic correlations based on a standard EA GWAS
(i.e., GWAS-O; SI Appendix, Fig. S13).
Three traits (i.e., cognitive performance [P = 1.53 × 10−7 and

2.51 × 10−6], age at first birth [P = 1.02 × 10−5 and 3.64 × 10−5],
and smoking cessation [P = 3.97 × 10−3 and 3.05 × 10−3]) were
significantly correlated with both direct and indirect components

Fig. 2. Simulation results. Box plots of direct and indirect effect size estimates (A–C) and the proportion (numbers shown at the top of each bar) of P values
smaller than 0.05 (D–F) from 1,000 repeats. Each column shows results for the same simulation setting. Red and blue dashed lines indicate true values of direct
and indirect genetic effects, and gray dashed lines are the true indirect maternal and indirect paternal effect sizes. The direct, indirect maternal, and indirect
paternal effect sizes are (0, 0, 0), (0.02, −0.02, −0.01), and (0.02, 0.02, 0.01) for A–C, respectively. A and C describe results for case i in Table 1 in which three
input GWAS are used. B describes case ii in which GWAS-O and GWAS-MP are used as input. There are no sample overlaps in A and B and a complete overlap
in C (i.e., all samples in GWAS-M and GWAS-P are also in GWAS-O). In F, blue and red bars show the statistical power with and without sample overlap
correction, respectively. nO = nM = nP = 30K in A and B. nO = nM + nP = 60K, nM = nP = 30K in C.
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of EA. Across four traits for smoking behavior, we observed
a consistent pattern that higher EA, especially its indirect
component, was correlated with reduced smoking activity.
Among neurological traits, attention-deficit/hyperactivity disor-
der (P = 1.77 × 10−3), major depressive disorder (P = 2.27 × 10−3),
and neuroticism (P = 3.87 × 10−3) showed significant nega-
tive correlations with the indirect EA effect, while ASD
(P = 3.91 × 10−3) was positively correlated with the direct effect.
Notably, several diseases and anthropometric traits known
to genetically correlate with EA (e.g., rheumatoid arthritis
P = 2. 23 × 10−3[ ], height P = 2. 77 × 10−4[ ], and body mass index
[BMI; P = 1.85 × 10−5]) were only correlated with the indirect
component of EA in our analysis. Such a pattern was also ob-
served for type-2 diabetes, coronary artery disease, and various
lipid traits despite not reaching statistical significance.
Next, we assessed the predictive performance of PGS of direct

and indirect effects on EA. We generated bioinformatically fine-
tuned PGS (32) for direct and indirect components of EA using
UKB participants (Methods and Dataset S10). Overlapping UKB
samples were removed from the input GWAS when necessary
(Methods). SI Appendix, Fig. S14 shows the predictive perfor-
mance on 15,580 full sibling pairs and 370,308 independent UKB
samples. Both direct and indirect PGS were significantly asso-
ciated with EA in independent samples (P = 4.63 × 10−8 and
1.46 × 10−9) with similar effect sizes (regression coefficient =

8.7 × 10−3 and 9.6 × 10−3). Direct-effect PGS was positively as-
sociated with the EA in full sibling pairs with an effect size
comparable to that in the population (regression coefficient =
0.013). The indirect PGS was negatively correlated with EA in
full siblings. However, due to a limited sample size, neither direct
nor indirect PGS reached statistical significance in sibling pairs
(P = 0.16 and 0.52). The effect sizes of these PGS were also
substantially weaker compared to the standard EA PGS based on
population GWAS (17).
We found that the somewhat surprising yet consistently rep-

licated genetic correlation between ASD and higher EA (33, 34)
is mainly driven by the direct genetic component of EA (Fig. 4).
We followed up this finding in 7,804 ASD proband–parent trios
from three cohorts (Methods), including the Autism Genome
Project (AGP), Simons Simplex Collection (SSC), and Simons
Foundation Powering Autism Research for Knowledge (SPARK).
We performed polygenic transmission disequilibrium test (35)
(pTDT) to quantify the deviation of ASD probands’ EA PGS
from the parents’ PGS (Methods). We identified a significant
P = 1.25 × 10−3( ) overtransmission of the direct-effect EA PGS
from healthy parents to ASD probands (Fig. 5 and Dataset S11).
We did not identify a significant overtransmission of the indirect
EA PGS P = 0.61( ). Neither PGS showed any significant devia-
tion from transmission equilibrium in healthy sibling controls.

Fig. 3. Comparison of DONUTS and analyses based on individual-level data. We estimated direct and indirect maternal genetic effects on birth weight using
independent female samples of European ancestry in the UKB who reported both their own birth weight and their first child’s birth weight (n = 75,711). The
x-axis of each panel shows results based on DONUTS, and the y-axis shows results based on the phenotype transformation approach. Each data point rep-
resents an SNP. A total of 7,080,935 imputed SNPs were included in the analysis. The first row is for the direct genetic effect, and the second row is for the
indirect maternal effect. Two methods gave almost identical estimates for effect sizes (first column) and SEs (second column). The SEs showed inflation if
sample overlap was not accounted for (third column). The diagonal line is highlighted in each panel.
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Discussion
GWAS has identified more than 60,000 genetic associations for
thousands of human diseases and traits, yet our understanding
toward their etiology remains incomplete (36). Recent advances
in family-based studies (6–9, 14, 15, 28, 37) have convincingly
demonstrated genetic nurture effects on a variety of behavioral

traits as well as health-related outcomes. These results also shed
important light on the limitations of current GWAS approaches.
Accurate dissection of direct and indirect genetic effects is crit-
ical for advancing the interpretation of genetic associations and
may fundamentally change the current practice of genetic pre-
diction and its clinical applications.
In this paper, we introduced a statistical framework that uses

summary statistics from multigenerational GWAS to decompose
the direct and indirect genetic effects for a given trait. Compared
to existing methods, our approach does not require access to
individual-level data, has minimal computational burden, and
accounts for GWAS sample overlap and assortative mating. In
addition, when results from GWAS-M and GWAS-P are avail-
able, our method can partition the contribution of maternal and
paternal genetic effects, thereby inferring the parent-of-origin of
genetic nurture. Even when only a combined parental GWAS
(i.e., GWAS-MP) is available, statistical inference of direct and
indirect effects remain valid under weak assumptions. Impor-
tantly, due to these methodological advances, our approach does
not require drastic changes to the current GWAS practice. All it
needs is collecting offspring phenotype data (but not genotypes)
in GWAS cohorts, which is substantially more economical and
practical compared to collecting both genotypes and phenotypes
from a large number of families. We note that even when
individual-level data are available, our method will not have
substantially lower power, especially for traits with higher heri-
tability. We compared the effective sample sizes between our
study design and a trio-based design (SI Appendix) and found
that the effective sample size of two approaches converge (SI
Appendix, Fig. S15).
EA is an important and highly complex trait that correlate

with many health and social outcomes (17). Kong et al. (6)
quantitatively demonstrated the existence of indirect genetic
effects on EA. It is thus of great interest to understand the eti-
ologic relevance of its direct and indirect components and how
they affect other genetically correlated phenotypes. Using a PGS

Fig. 4. Genetic correlations of EA (direct and indirect effects) with 45 complex traits. Dots and intervals indicate the point estimates and SE of genetic
correlations, respectively. Significant correlations at a false discovery rate (FDR) cutoff of 0.05 are highlighted with white circles. ADHD: attention-deficit/
hyperactivity disorder; MDD: major depressive disorder; ASD: autism spectrum disorder; AD: Alzheimer’s diseases; ALS: amyotrophic lateral sclerosis; IBD:
inflammatory bowel disease; T2D: type-2 diabetes; CAD: coronary artery disease; LDL and HDL: low- and high-density lipoprotein; BMI: body mass index; HV:
hippocampal volume; and ICV: intracranial volume.

Fig. 5. pTDT results for direct and indirect EA PGS in 7,804 ASD probands
and 3,242 healthy siblings. Dots are the mean difference between child PGS
and midparent PGS and intervals indicate the SE.
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approach, Willoughby et al. (9) found that the indirect effect of
EA may work through the family socioeconomic status. The
genetic relationships of the direct and indirect effect of EA with
other traits, however, are still unknown. We dissected the genetic
effects of EA at the SNP level using our approach. The direct
and indirect components of EA showed distinct genetic corre-
lations with other complex traits. The known genetic correlations
between EA and higher height, lower BMI, less-active smoking
behavior, and better health outcomes were mostly explained by
the indirect genetic component of EA. One exception that stood
out in our analysis was ASD, a clinically heterogenous neuro-
developmental disorder that has been consistently identified to
genetically correlate with higher cognitive ability (33, 34). We
found that the positive ASD–EA genetic correlation mostly re-
sides in the direct component of EA. We also note that these
results are unlikely confounded by population stratification due
to robustness of the LDSC approach (29, 38). Although excep-
tions exist where bivariate LDSC fails to provide robust esti-
mates for genetic correlations (39, 40) when unadjusted
confounding is correlated with LD in both input GWAS (38, 41),
we did not observe strong unadjusted population stratification
nor its correlation with LD in our results. Followed up in three
independent cohorts of ASD proband–parent trios, we identified
significant overtransmission of the direct component of EA from
healthy parents to ASD probands but not to the healthy siblings.
These results added value to the recent advances in under-
standing common genetic variations’ roles in ASD etiology (33,
35, 42, 43) and provided critical insights into the shared genetic
basis of ASD and cognitive ability. These results also call for
extreme caution in human genome editing and embryo screening
(44). Beyond the ethical issues, elevating the PGS of EA may
have limited direct protective effects on health outcomes and
could lead to deleterious consequences such as increased
ASD risk.
Our study has several limitations. First, we assumed that

population stratification is properly controlled in each input
GWAS. Unadjusted confounding in GWAS may lead to biased
effect size estimates in DONUTS (SI Appendix). In addition,
applications involving PGS may be particularly susceptible to
such population stratification when weak, but systematic bias is
aggregated across many SNPs (39, 40). We have used birth
weight GWAS to demonstrate the robustness of our approach to
confounding. Nevertheless, we emphasize that the quality of
DONUTS estimates will depend on the data quality of input
GWAS. It is always a good practice to remove as much con-
founding as possible from input GWAS, and results should be
interpreted with caution. A related issue is that direct and indi-
rect effect size may be heterogeneous across birth cohorts.
However, in reality, each input GWAS may contain individuals
from diverse age groups. If the true genetic effects are different
across age groups, the effect estimate from a GWAS meta-
analysis will be a weighted average of the effects from different
generations. As a result, DONUTS results will also be the av-
eraged effects across multiple generations. It is crucial to take
this into consideration when interpreting the results.
Second, assortative mating is another crucial factor that may

bias inference in DONUTS (45, 46). In our main framework, we
only considered assortative mating in the parent generation. We
also provide a principled approach to account for assortative
mating in the grandparent generation (SI Appendix). However, it
is not compatible with the Hardy–Weinberg equilibrium (HWE)
assumption in our model, although the deviation from HWEmay
be small in practice (46). Practically, it is difficult to leverage
heterogenous α in real data analysis since the degree and pattern
of assortative mating could be very different across diverse
geographic locations and age groups. Our sensitivity analysis
showed that the effect of assortative mating at the SNP level is
small and will not substantially impact our results for EA or birth

weight (SI Appendix, Fig. S11). Still, consolidating these different
sources of technical biases through a unified framework remains
a challenge.
Third, accurate estimation of direct and indirect effects re-

quires all input GWAS to be sufficiently large with comparable
sample sizes. Otherwise, the estimation performance will be
limited by the least-powered GWAS. This is because the GWAS
with a smaller sample size will tend to have noisier effect esti-
mates and larger SEs. Since our direct and indirect effect esti-
mators are linear combinations of input GWAS associations
(Table 1), GWAS with the smallest sample size would dominate
final results by introducing substantial noise. The current sample
size in our EA analyses was not sufficient for significant associ-
ation mapping or calculating well-powered PGS of direct and
indirect EA effects.
Fourth, we did not account for potential indirect sibling effects

in our model. Although evidence has suggested that the indirect
effects from siblings are negligible compared to direct effects and
parental effects (15, 16), it may be important to account for
sibling effects in certain applications (47).
Fifth, summary statistics of the 45 complex traits used in our

genetic correlation analyses are mixtures of direct and indirect
effects. Genetic correlations of direct/indirect effects on both
traits included in the pairwise correlation analysis will provide a
deeper and clearer understanding about the shared genetic ar-
chitectures across these traits. However, direct and indirect ef-
fect summary statistics are not currently available for most traits,
mostly due to limited sample size that reported children’s phe-
notype. Therefore, careful dissection of genetic correlation into
direct and indirect components remains to be implemented in
the future.
Finally, our method provides unbiased effect size estimates but

will introduce a negative technical correlation between the direct
and indirect effect estimates, which we discuss in detail in SI
Appendix. This is not a unique issue in our approach and was also
observed in analyses based on individual-level data (15, 28).
Similarly, the indirect maternal and indirect paternal effect es-
timates will also become positively correlated due to this tech-
nical artifact. When sample size is limited, such technical
correlations will shade the true genetic effects and hinder the
interpretation of associations.
Taken together, our method has made important technical

advancements in partitioning complex traits’ direct and indirect
genetic effects. It provides statistically rigorous and computa-
tionally efficient estimates based on summary statistics from
multigenerational GWAS, which provide a clear guidance on
future study designs. If large genetic cohorts with multigenera-
tional phenotypic information becomes the convention in the
field, our method will have broad applications and can facilitate
our understanding of the genetic basis of numerous human traits.

Methods
Method Details. We assume the true genetic model for the offspring phe-
notype YO in a family to be

YO = GOβdir + GMβind mt + GPβind pt + e

= GOβdir + TMβind mt + TPβind pt( ) + NTMβind mt + NTPβind pt( ) + e,

where GO = TM + TP , GM = TM + NTM, and GP = TP + NTP are the offspring,
maternal, and paternal genotypes in a family, respectively. T and NT rep-
resent the transmitted and nontransmitted alleles, respectively. βdir , βind mt,
and βind pt are the true direct, indirect maternal, and indirect paternal effect
sizes, respectively. e is the noise term. Without loss of generality, we assume
YO, GO, GM , and GP are all centered at 0. We also assume the transmitted
and nontransmitted alleles to be independent. That is, TM and NTM are in-
dependent; TP and NTP are also independent. Due to assortative mating
between parents, maternal and paternal genotypes may be correlated, and
we denote their correlation at a locus to be Corr GM ,GP( ) = α to quantify the
degree of assortative mating. We also assume the variance of parental
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genotypes to be Var GM( ) = Var GP( ) = 2p 1 − p( ), where p is the minor allele
frequency (MAF).

We define indirect genetic effect βind as the effect of a person’s genotype
on his or her phenotype via the indirect pathway that goes through bio-
logical parents and the family environment. Equivalently, βind is the pro-
jection of TMβind mt + TPβind pt on GO which can be denoted as

βind = (βind mt + βind pt)/2.

If genetic data are available in a number of parents–offspring trios, by
regressing YO on the offspring, maternal, and paternal genotypes, the co-
efficients in the joint regression estimate the direct, indirect maternal, and
indirect paternal genetic effects, respectively. If instead we have data of
own phenotype and own genotype and perform GWAS-O that regresses YO

on GO (which is the standard GWAS), the effect size estimate is given by

β̂O = (GT
OGO)−1GT

OYO = (GT
OGO)−1GT

O(βdirGO + βind mtGM + βind ptGP + e). It can
be found that (SI Appendix) Cov GO,GM( ) = Cov GO,GP( ) = p 1 − p( ) 1 + α( ).
Then, we can express βO in terms of the direct and indirect effect sizes. Simi-
larly, we can also perform GWAS-M (regress YO on GM) and GWAS-P (regress
YO on GP) with effect size βM and βP, respectively. The expressions for βM and
βP can also be derived. Then, using three equations, we can solve for the direct
and indirect genetic effects analytically:

βdir = 2 + α( )βO − βM − βP ,

βind mt = 3 − α2

2 1 − α2( )βM + 1 − 2α − α2

2 1 − α2( ) βP − 1 + α

2
( )βO,

βind pt = 3 − α2

2 1 − α2( )βP +
1 − 2α − α2

2 1 − α2( ) βM − 1 + α

2
( )βO,

βind = βind mt + βind pt

2
= 2 + α

2 + 2α
βM + βP − 1 + α( )βO[ ].

Our framework could also be naturally extended to the PGS level (SI Ap-

pendix). Another technical note is that the covariance between β̂dir and β̂ind
are always negative. We discuss this in detail in SI Appendix.

Simulation. We randomly selected 1,000 independent SNPs in the UKB
genotyped data as causal variants and sampled their true effect sizes from a

normal distribution with mean 0 and variance of 0.012, which gives us re-
alistic values of effect sizes. As a comparison, the effect size in EA summary
statistics (17) ranges from about −0.05 to 0.05 with a variance of about

0.0052. We first simulated three sets of trios (sets 1 through 3). Each set
consisted of 30,000 trios. In each trio, parental genotypes were independently
simulated under binomial distributions using each SNP’s MAF. The offspring
genotypes were generated from parental data followingMendelian inheritance.
The offspring phenotype was computed as a weighted sum of these 1,000 SNPs

plus a normal error term yO = ∑1000
i=1

GO,iβdir,i + GM,iβind mt,i + GP,iβind pt,i + «. We

used these three sets to run GWAS-O, GWAS-M, and GWAS-P, respectively. To
simulate overlapping samples, we generated two additional sets (sets 4 and 5)
of multigenerational families. In each family, we simulated data for three
generations: two grandparents, two parents, and one child. Thus, these par-
ents can be used as overlapping samples since we can compute both their own
and their children’s phenotypes (SI Appendix, Figs. S1B and S2). When simu-
lating the phenotypes for the overlapping samples, we set the errors for
computing own phenotypes and those for computing offspring’s phenotypes
to be correlated since they share similar family environment. We set the cor-
relation to be 0.3. Var «( ) was set to be 0.04 so that it accounted for ∼30% of
the phenotypic variance.

We simulated three different scenarios: 1) GWAS-O, GWAS-M, and GWAS-
P as inputs in which all the samples in these three GWASs were independent;
2) GWAS-O and GWAS-MP as inputs in which these two GWASs also used
independent samples; 3) GWAS-O, GWAS-M, and GWAS-P as inputs in which
GWAS-M and GWAS-P used independent samples; however, all samples in
GWAS-M and GWAS-P were also present in GWAS-O (SI Appendix, Fig. S2).
That is, for scenario 3, we used the parents in sets 4 and 5 to conduct GWAS-
O, GWAS-M, and GWAS-P.

Among the 1,000 causal SNPs, we focused on one SNP with a MAF of 0.23.
We used different settings for its true effect sizes: (βdir , βind mt , βind pt)= (0, 0,
0), (0, 0.02, 0.01), (0.02, 0, 0.01), (0.02, 0.02, 0), (0.02, 0.01, 0.01), (0.02, 0.02,
0.01), and (0.02, −0.02, −0.01) to cover the null, positive direct and positive
indirect, and positive direct and negative indirect effects combinations. For

each setting, we repeated the simulation 1,000 times. For each repeat, we
applied our method to estimate the direct and indirect effects. We also
tested two other SNPs with MAF = 0.01 and 0.48.

In order to assess the effects of assortative mating on birth weight and EA

(SI Appendix, Fig. S11), we simulated α ∼ N(0, 0.0252) to have comparable
values with those obtained from real couples reported in Guo et al. (48)
Since assortative mating would most likely be positive, we also investigated
the scenario in which we set the α to be its absolute value if it is negative.
Our simulation generates α approximately within the range of estimates in a
previous study (48).

UKB Data Processing. We used UKB data to conduct GWASs on birth weight
and EA and perform PGS regression analyses. We excluded the participants
that are recommended by UKB to be excluded from analysis (data field 22010
in the UKB), those with conflicting genetically inferred (data field 22001) and
self-reported sex (data field 31), and those who withdrew from the study.
UKB samples with European ancestry were identified from PC analysis (data
field 22006). We used software KING (49) to infer the pairwise family kin-
ship. We identified 154 pairs of monozygotic twins, 242 pairs of fraternal
twins, 19,136 full sibling pairs, and 5,336 parent–offspring pairs among
408,921 individuals with European ancestry in the UKB. PCs were computed
using flashPCA2 (50) on genotyped data for each in-house GWAS using UKB
samples. In each GWAS, we kept only the SNPs with missing call rate ≤0.01,
MAF ≥0.01, and with HWE test P value ≥10−6.

Birth Weight GWAS Analysis. The own (n = 298,142) and maternal (n =
210,267) GWAS summary statistics reported in Warrington et al. (28) were
downloaded from the Early Growth Genetics Consortium website (https://
egg-consortium.org/birth-weight-2019.html). We removed duplicated SNPs
in each file, took SNP intersections between these two sets of summary
statistics, and flipped the sign of effect size estimates when necessary, such
that the effect alleles were matched between the two input GWASs. We also
downloaded the summary statistics for the inferred direct and indirect ma-
ternal genetic effects to compare with our results (SI Appendix, Fig. S6). To
have a fair comparison, we used the SNPs whose sample sizes and effect
allele frequencies reported in the paper’s direct and indirect maternal effect
summary statistics that are consistent with those reported in their GWAS-O
and GWAS-M summary statistics and heterogeneity P value > 0.05. More
than 8 million SNPs were used in the comparative analysis.

The UKB collected participants’ birth weight (data field 20022). Women
who had at least one child were also asked for the birth weight of their first
child (data field 2744). We also constructed two orthogonal phenotypes
representing the direct and indirect components of birth weight following
Warrington et al. (28) The two phenotypes were defined as the following:
2(2BWown − BWoffpring)=3 and 2(2BWoffspring − BWown)=3, where BWown is
own birth weight and BWoffspring is the offspring’s birth weight.

We conducted GWASs for these four phenotypes (i.e., own and offspring
birth weights and the two orthogonal phenotypes) on 75,711 independent
individuals of European ancestry who had both own and first child’s birth
weights available. To compare, this number was 101,541 in Warrington et al.
(28), which included both Europeans and non-European samples. Birth
weight was constructed following Warrington et al. (28) Year of birth,
genotyping array, and top 20 PCs were used as covariates. The results on
own and first child’s birth weight were used as input in our framework to
estimate the direct and maternal effects while the GWASs on orthogonal
phenotypes were used as comparison. To investigate the robustness of our
approach to population stratification, we also performed GWAS-O and
GWAS-M without PCs as covariates and using linear mixed models imple-
mented in the software BOLT-LMM (51).

GWAS on Offspring EA.We identified 5,336 parent–offspring pairs among the
UKB European ancestry samples. Following Lee et al. (17), we used the
“qualification” (data field 6138) to compute the years of schooling as the EA
phenotype. Year of birth, sex, genotyping array, and top 20 PCs were used as
covariates. We used parents from independent parent–offspring pairs with
offspring EA phenotype and covariates information as GWAS samples. If
both parents’ genotype data were available, we only included one of them
in the analysis. The GWAS sample size was n = 4,181 (2,619 females and
1,562 males).

In the HRS cohort, the respondent’s oldest child’s EA phenotype was
constructed following Okbay et al. (52) We kept only the independent
[inferred by KING (49)] European parents (self-identified as “white/cauca-
sian”) in our analyses. Year of birth, sex, and top 10 PCs were used as
covariates. GWAS sample size was n = 6,324 (3,780 females and 2,544 males).
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In the WLS cohort, the oldest child’s education information was given by
variables “z_rd01001”, “z_gd01001”, and “z_gd21001” corresponding to
different rounds of collection. We used the maximum value whenever there
was any inconsistency among different rounds. The EA phenotype was
constructed following Lee et al. (17) We required the GWAS samples to be of
European ancestry (variable “z_ie008re”), independent [inferred by KING
(49)], that the oldest child was a biological offspring (“z_rd00401” and
“z_gd00401”), that the offspring’s EA was measured when the child was at
least 30 y old, and that parent was at least 15 y older than the child. Year of
birth, sex, and top 10 PCs were used as covariates. GWAS sample size was n =
4,772 (2,513 females and 2,259 males).

Software PLINK (53) version 1.9 was used to perform all GWASs. Finally,
we meta-analyzed these three offspring EA GWASs using the inverse vari-
ance based approach in METAL (54) to obtain the GWAS-MP as the input for
our framework.

We also compared results given by our framework and SNIPar (15) with a
same set of data in UKB. Using the full siblings (n = 35,243 samples from
17,136 families) of European ancestries in UKB identified by KING (49) (here,
we only used the full siblings whose parents are not in the UKB), SNIPar
imputed their expected average parental genotype. With the sum of im-
puted parental genotype and the observed offspring’s genotype jointly in
the model, SNIPar computed the direct and indirect effects on EA with a
linear mixed model (n = 34,956 samples from 17,135 unique families with
nonmissing EA phenotype). Using the same full sibling data, we performed
GWAS-O using the observed siblings (n = 17,135 independent samples with
phenotype and covariates available). Using the imputed sum of parental
genotype, we ran GWAS-MP. Then our framework could also compute the
direct and indirect effects using the two summary statistics, and the com-
parison results are shown in SI Appendix, Fig. S16. Year of birth, sex, gen-
otyping array, and top 20 PCs were used as covariates in GWAS-O. In GWAS-
MP, the offspring’s year of birth, genotyping array, and top 20 PCs were
used as covariates in which the PCs were computed using the imputed pa-
rental genotype by flashPCA2 (50).

GWAS on Own EA in UKB. We conducted GWAS-O (n = 356,719) using inde-
pendent European samples in the UKB, excluding the full sibling samples
(n = 35,243) that were used by SNIPar. The EA phenotypes were constructed
following Lee et al. (17). Year of birth, sex, genotyping array, and top 20 PCs
were used as covariates. We then meta-analyzed with EA3 summary statis-
tics that excluded UKB samples. The reason for excluding the full siblings was
because later we would do meta-analysis with SNIPar results which used the
full sibling data.

Genetic Correlation Analysis. We used both LDSC (29) and GNOVA (31) to
compute genetic covariances and genetic correlations for any given pair of
traits using their GWAS summary statistics. The results based on two ap-
proaches were comparable. The genetic correlation results shown in the
main text were from LDSC. Details of the 45 traits used in the analysis and
LDSC and GNOVA results are shown in Datasets S6–S8.

PGS Calculation and Regression Analysis. We performed PGS analysis on two
sets of UKB samples with European ancestry: the first set was 16,580 pairs of
full siblings, and the second was 370,308 independent individuals. For each
sample, two EA PGSs based on direct and indirect effect estimates were
computed. To maximize the power and avoid overfitting, we used different
input summary statistics to compute the direct and indirect effects. For the
full sibling pairs, we first excluded full sibling pairs from the UKB samples,
then used KING (49) to identify a subset of independent individuals (n =
356,719) and ran an EA GWAS following Lee et al. (17) We used METAL (54)
to meta-analyze it with EA3 GWAS that excluded 23andMe and UKB samples
(n = 324,162). Together with the offspring EA GWAS as inputs, we computed
the direct and indirect effect summary statistics which were used to compute
the PGSs for the full sibling pairs in UKB. For the second set, we used the EA3

GWAS that excluded 23andMe and UKB samples and the offspring EA GWAS
as input to estimate the direct and indirect effects.

To compute PGS, we first clumped the summary statistics in PLINK (53)
version 1.9 using the Northern Europeans from Utah (CEU) samples in 1000
Genome Project Phase III cohort (55) as the LD reference panel. We applied
an LD window size of 1 Mb and a pairwise r2 threshold of 0.1. Then, we
computed PGS using software PRSice-2 (56) with a fine-tuned P value cutoff
given by software PUMAS (32). PUMAS uses GWAS summary statistics as
input and output and an optimal P value cutoff that gives the highest R2 for
the PGS regression analysis. Since the PGS will use only the SNPs that are
present in the target samples, we used only the SNPs that are present in the
summary statistics, LD reference panel, and the target samples when
running PUMAS.

We used software R (57) version 3.5.1 to run linear regression of EA on
PGSs. Both the EA phenotype and PGS were standardized. For full sibling
pairs, we regressed EA difference between siblings on PGS differences. For
independent samples, we used year of birth, sex, genotyping array, assess-
ment center, and top 10 PCs as covariates. R2 was computed as the ratio of
sum squares by PGS to the total sum of squares.

pTDT Analysis. Three ASD cohorts were used in the pTDT analysis: AGP (n =
2,188 trios), SSC (1,794 proband trios and 1,430 sibling trios), and SPARK
(3,822 proband trios and 1,812 sibling trios). Details of data processing in
these cohorts have been described previously (42). To compute PGS, we first
used PLINK (53) version 1.9 to clump the direct and indirect effect summary
statistics using the CEU samples in 1000 Genome Project Phase III cohort (55)
as the LD reference panel. We applied an LD window size of 1 Mb and a
pairwise r2 threshold of 0.1. PGSs were computed using PRSice-256 with
optimal P value cutoffs estimated by PUMAS (32). We performed pTDT (35)
to measure the transmission disequilibrium in EA polygenic risks for ASD
probands and siblings. The pTDT details were described in Weiner et al. (35)
Briefly, it first scales every PGS by subtracting the parental average PGS and
then dividing the parental PGS SD. Then, the scaled PGS deviation values are
used to test whether the children’s PGS are significantly different from the
parental average.

Data Availability. Previously published data were used for this work: 1) Ref.
30, 2) Ref. 28, 3) WLS: https://www.ssc.wisc.edu/wlsresearch/, 4) HRS: https://
hrs.isr.umich.edu/about, 5) AGP Consortium: https://www.ncbi.nlm.nih.gov/
projects/gap/cgi-bin/study.cgi?study_id=phs000267.v5.p2, 6) SSC: https://
www.sfari.org/resource/simons-simplex-collection/, and 7) SPARK: https://
www.sfari.org/resource/spark/. The DONUTS package is available in GitHub
at https://github.com/qlu-lab/DONUTS. All summary statistics generated in
this study are freely accessible from the Q.L. laboratory (http://qlu-lab.org/
data.html) or at the GWAS Catalog:

http://ftp.ebi.ac.uk/pub/databases/gwas/summary_statistics/GCST90017001-
GCST90018000/GCST90017139/, http://ftp.ebi.ac.uk/pub/databases/gwas/summary_
statistics/GCST90017001-GCST90018000/GCST90017140/, http://ftp.ebi.ac.uk/
pub/databases/gwas/summary_statistics/GCST90017001-GCST90018000/
GCST90017141/, and http://ftp.ebi.ac.uk/pub/databases/gwas/summary_statistics/
GCST90017001-GCST90018000/GCST90017142/.
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